Hilbert’s double series theorem and principal latent roots of the resulting matrix

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regions of Exclusion for the Latent Roots of a Matrix

It is the purpose of this note to point out that there may also exist bounded regions which exclude the latent roots of A. Let B: [&,-,•] be an nXn matrix with complex elements. Let (/i(l), • • ■ , n(n)) be a permutation of (1, • • • , n), and let B'\ [b'tj] be the matrix [b'v] = [&*.(,•)]. Thus£' is obtained from B by a permutation of its columns, and therefore B is nonsingular when B' is nons...

متن کامل

GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES

The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.

متن کامل

Double roots of [-1, 1] power series and related matters

Abstract. For a given collection of distinct arguments ~ θ = (θ1, . . . , θt), multiplicities ~k = (k1, . . . , kt), and a real interval I = [U, V ] containing zero, we are interested in determining the smallest r for which there is a power series f(x) = 1 + ∑∞ n=1 anx n with coefficients an in I, and roots α1 = re2πiθ1 , . . . , αt = re2πiθt of order k1, . . . , kt respectively. We denote this...

متن کامل

Filtrations of smooth principal series and Iwasawa modules

Let $G$ be a reductive $p$-adic group‎. ‎We consider the general question‎ ‎of whether the reducibility of an induced representation can be detected in a‎ ‎``co-rank one‎" ‎situation‎. ‎For smooth complex representations induced from supercuspidal‎ ‎representations‎, ‎we show that a sufficient condition is the existence of a subquotient‎ ‎that does not appear as a subrepresentation‎. ‎An import...

متن کامل

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1949

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1949-0029541-4